

Practical Sheet Nº 2 (Basic Input & Output)

Objectives Duration

At the end of this practical sheet, you will be able to:

• Use the Arduino IDE to compile and run a program written in ArduinoC.

• Use the ESP32s DEVKIT to execute source code and perform

debugging via UART.

• Program in Arduino C using decision and repetition structures.

30 min.

1. Using the circuit implemented in the previous training sheet, add a pushbutton to the

circuit using pin G25 to read the state of the button to look like Figure 1.

Figure 1: Button and LED circuit

2. Create a new sketch in the Arduino IDE and paste the following code:

///

// Practical -

// MECHAUZC2023

///

#define BUTTON_PIN 25

#define LED_PIN 2

// variables

int led_state = LOW; // the current state of LED

int button_state; // the current state of button

int last_button_state; // the previous state of button

void setup() {

Serial.begin(9600);

pinMode(LED_PIN, OUTPUT);

pinMode(BUTTON_PIN, INPUT_PULLUP);

button_state = digitalRead(BUTTON_PIN);

}

void loop() {

last_button_state = button_state; // save the last state

 button_state = digitalRead(BUTTON_PIN); // read new state

if (last_button_state == HIGH && button_state == LOW) {

 Serial.println("The button is pressed");

 // toggle state of LED

 led_state = !led_state;

 // control LED arccoding to the toggled state

 digitalWrite(LED_PIN, led_state);

 }

}

The state of the button is performed by the function digitalRead() and every time the

button is pressed the variable of the state of the LED is toggle before writing the state

to the LED´s GPIO.

3. Implement a program that counts the number of clicks on the button. The program

should the accumulated number of clicks as soon as a new click is after a new click is

counted.

Note that in a real circuit, it will be necessary to use a strategy to eliminate the multiple

bounces that occur in the electrical signal after the button is clicked, as shown in the

Figure 2. The "debounce" can be done by two different methods:

• by hardware using a Low Pass Filter (LPF)

• by software, by including a waiting time T, right after the first transition, to

ensure that the multiple transitions that occur, for mechanical reasons inherent

to the button, are not accounted for.

Figure 2: Signal debouncing

4. Implement software debouncing.

Above is a solution to implement software debouncing for the button.

///

// Practical -

// MECHAUZC2023

///

#define BUTTON_PIN 25

#define LED_PIN 2

#define DEBOUNCE_TIME 50

// variables

int led_state ; // the current state of LED.

int button_state=LOW; // the current state of button

int last_button_state;

int last_Flickerable_State = LOW; // the previous state of button

int counter=0;

unsigned long lastDebounceTime = 0;

void setup() {

Serial.begin(9600);

pinMode(LED_PIN, OUTPUT);

pinMode(BUTTON_PIN, INPUT_PULLUP);

button_state = digitalRead(BUTTON_PIN);

}

void loop() {

button_state = digitalRead(BUTTON_PIN); // read new state

if (button_state != last_Flickerable_State){

 lastDebounceTime = millis();

 last_Flickerable_State = button_state;

}

if((millis()-lastDebounceTime)>DEBOUNCE_TIME){

 if (last_button_state == HIGH && button_state == LOW) {

 Serial.println((String)"The button is pressed | counter= "+counter++);

 // toggle state of LED

 led_state = !led_state;

 // control LED arccoding to the toggled state

 digitalWrite(LED_PIN, led_state);

 }

 last_button_state=button_state;

}

}

