

Practical Sheet Nº 4 (MQTT)

Objectives Duration

At the end of the training, you will be able to:

• Understand what an M2M communications protocol is for

• Understand the operation mode of a messaging protocol considering

the publish/subscribe model.

• Know the operation mode of the MQTT standard.

• Implement an M2M communications system using the MQTT standard.

60min.

Introduction

The MQTT (Message Queue Telemetry Transport) protocol was created by IBM in the late 1990s. Its

initial application was to integrate sensors in pipelines with satellite communications. It is a messaging

protocol that supports asynchronous communications between parties. The MQTT protocol uses a

publish and subscribe model having become an open OASIS standard in late 2014 and is supported

by multiple programming languages and several open-source implementations exist.

MQTT is a machine-to-machine (M2M) communications protocol with wide application in the domain

of Cyber-Physical Systems or the Internet of Things. It is designed to allow message transport in

publish/subscribe mode, as can be seen in Figure 1.

Figure 1: Data Flow in the MQTT protocol, from sensor (machine) to client (machine)

MQTT is a valuable protocol for communication in low-bandwidth and resource-constrained

scenarios. Its small protocol stack, low power consumption, small data packets, and efficient message

distribution make it ideal for limited devices. MQTT is lightweight and flexible, making it suitable for

high hardware constraints, high latency, and limited bandwidth networks. It emerged to overcome the

limitations of the widely used HTTP protocol in web services, namely:

• HTTP is a synchronous protocol, i.e., the client always waits for the server to respond.

• HTTP is a one-way protocol, i.e., the client must always initiate the connection.

• HTTP is a 1-1 protocol, i.e., the client makes a request and the server replies.

• HTTP is a heavy protocol with many headers and rules and is not suitable for narrow networks.

For the above reasons, most scalable high-performance systems use an asynchronous messaging

system instead of web services for data exchange.

On the other hand, the MQTT protocol requires much less network and device resources to operate

with it publish/subscribe model, which allows you to fully disaggregate the data provider and the data

consumer.

The publish/subscribe model.

The MQTT protocol defines two types of entities in the network: a message broker and clients. The

broker is a server that receives messages from clients and forwards them only to clients that have

subscribed to them.

A client is any device that can interact with the broker to send and receive messages. A client can be

an IoT device or an application in a data centre that processes data, as can be seen in Figure 2.

Figure 2: MQTT Publish/Subscribe model for IoT applications.

The main steps in the MQTT communication process are as follows:

1. The client connects to the broker and can subscribe to any specific message thread. This

connection can be of the TCP/IP type or simply an encrypted TLS connection.

2. The client publishes messages related to a specific topic by sending the message and the

topic to the broker.

3. The broker forwards the message to all clients that subscribed to that topic.

Since MQTT messages are organized by topics, application development is more flexible since it is

enough to specify that certain clients can only interact with certain messages. In the example in

Figure2, the sensors publish the readings in the "sensor_data" topic and subscribe to the

"config_change" topic. The "Data Processing and Storage" application that stores the data coming

from the sensors in a database subscribe to the "sensor_data" topic. The "Admin Console" application

can receive commands from the system administrator to adjust sensor settings, such as sensitivity

and sampling frequency, and publish these changes to the "config_change" topic.

The MQTT protocol has a fixed header with only 2 bytes (red zone) where the where the message

type is specified.

Then the variable header zone is specified, where the topic is identified in text (green zone) relative

to the message.

Finally, the binary zone related to the payload (blue zone) is defined. Any data format can be used in

encoding the payload (JSON, XML, encrypted binary or Base64), if the target clients are able to parse

this payload.

Figure 3: Generic MQTT message format

Structure of a payload message

The message payload in MQTT can contain an ASCII-encoded Ad-Hoc format. For instance, it can

follow the message example bellow:

In the frame entered before, the following characters are used to identify:

 ‘&’ – ATTRIBUTE/VALUE pair separator

 ‘=’ – Divider of the ATTRIBUTE/VALUE pair

Main operation modes of the MQTT protocol: Push vs. Pull

In this practical sheet we intend to use an MQTT server (broker) that will be locally accessible

on the lab's LAN. The ESP32 DEV KIT will be used to implement the clients. Figure 4 shows

a diagram with several clients exchanging messages through an MQTT broker. As in most

publish/subscribe systems, sending messages involves posting on one or several specified

topics. Whenever it receives a new message, the broker forwards this to all subscribers of

that topic. In this work we intend to use two modes of interaction, Push and Pull, where the

broker will process and transmit 3 distinct topics: Topic1, Topic2 and Topic3, as represented

in Figure 4.

Figure 4: Generic mode of the MQTT message

In Push mode, Client A and Client B (temperature sensors) publish their messages in Topic

1 (groupXX/temperature). When a message is received at the broker, it is broadcast to all

current subscribers of that topic. In this case, Client D and Client E will receive all messages

transmitted by Clients A and B . This mode is unidirectional, and the data is "pushed" to the

server (push) by the device generating the data. In an IoT context, the device that publishes

is usually a sensor node and the subscriber is usually the server that processes and stores

the data coming from the sensor.~

In Pull mode, Client C sends publishes messages on Topic 2 (groupXX/light) that are

forwarded via broker to Client F, which responds by sending a message on Topic 3

(groupXX/lightState). In an IoT context, this mode of operation can be useful, for example, in

situations where a client needs to update the state of another client and get a confirmation of

that state update, as is the case in the example depicted in Figure 4.

Part 1 - Implementing MQTT communications in Push Mode

1. In the Arduino IDE go to Sketch > Include Libraries > Manage Libraries and install

the MQTT library PubSubClient

2. Consider the initial configuration code file “mqtt_push.ino” to implement the MQTT

client on ESP32s DEVKIT.

Replace ssid and password with the correct wi-fi credentials. The ID and the

TOPIC_PUB must be associated with the GROUP/KIT number. For Group01, use

GROUP_01 for the ID and group01/temperature for the TOPIC_PUB .

 This example is using a cloud broker HIVEMQ, but if you want to use a self-hosted,

just replace the server’s name and, port and credentials.

Using the text editor of the Arduino IDE create a sketch named

FP4_EX2_MQTT_client_push.ino.

3. The following reconnect2MQTTBroker() is responsible to maintain the connection to

the MQTT Broker.

4. The function setup() initiates the WiFi connection and sets the MQTT broker.

5. The loop() function will be continuously executing code for the MQTT client via the

client.loop() instruction. In addition, a regular check is made on the status of the

connection to the MQTT broker. If the connection fails, a new attempt is made to

connect to the broker. Consider the following code to implement the loop function:

6. Test the MQTT client code you implemented by connecting to the broker available for

that purpose. Ask the trainer for the broker's IP. Look at the dashboard for information

regarding your device.

7. Edit the code to generate a random temperature between 15 and 30 degrees and

publish it on the same topic every two seconds.

8. Make a copy of the sketch tested earlier and rename it to

FP4_EX8_MQTT_client_push.ino. Using the text editor of the Arduino IDE, adapt the

code to subscribe to the following new topics "group10/temperature" and

"group10/button". To do so, add and comment the code represented by the green

lines.

9. Now initialize the callback that handles the incoming messages by adding the following

code represented by the green line.

10. To process/print the received message to the console add the following callback

function, just after the variable definition, which will be triggered whenever the MQTT

client receives a new message from the subscribed topics.

11. Make a copy of the sketch tested earlier and rename it to

FP4_EX11_MQTT_client_push.ino Using the text editor of the Arduino IDE, adapt

the code to change the state of a LED of another device from the button of yours. For

this purpose, consider the following pairings:

GROUP # PUBLISH SUBSCRIBE

1
group01/btn_state
group01/led_state

group02/btn_state
group02/led_state

2
group02/btn_state
group02/led_state

group01/btn_state
group01/led_state

3
group03/btn_state
group03/led_state

group05/btn_state
group05/led_state

4
group04/btn_state
group04/led_state

group03/btn_state
group03/led_state

5
group05/btn_state
group05/led_state

group04/btn_state
group04/led_state

12. To train home, you can use an online MQTT Broker.

- List of online MQTT Brokers with free access can be found here .

- For development I recommend the use of MQTT Explorer client.

In the following figure the cliente has been configured to use HIVEMQ .

In the following example message “on” is published to topic group01/button

https://mntolia.com/10-free-public-private-mqtt-brokers-for-testing-prototyping/
http://mqtt-explorer.com/

